Streaming FW

Similar to Online FW, Streaming FW uses the inference FW [1] for individual document to find out the local variables \(\theta\) (topic proportions). But, the update global variable \(\lambda\) (variational pamameter of \(\beta\)) is adapted to the stream environments. With the streaming learning, we don’t need to know the number of documents in Corpus.

For more detail, you can see in [1]

We also make a simulation for the stream evironment with the articles from Wikipedia website. See simulation

class StreamingFW

tmlib.lda.StreamingFW(data=None, num_topics=100, eta=0.01, iter_infer=50, lda_model=None)

Parameters

  • data: object DataSet

    object used for loading mini-batches data to analyze

  • num_topics: int, default: 100

    number of topics of model.

  • eta (\(\eta\)): float, default: 0.01

    hyperparameter of model LDA that affect sparsity of topics \(\beta\)

  • iter_infer: int, default: 50.

    Number of iterations of FW algorithm to do inference step

  • lda_model: object of class LdaModel.

    If this is None value, a new object LdaModel will be created. If not, it will be the model learned previously

Attributes

  • num_terms: int,

    size of the vocabulary set of the training corpus

  • num_topics: int,

  • eta (\(\eta\)): float,

  • iter_infer: int,

    Number of iterations of FW algorithm to do inference step

  • lda_model: object of class LdaModel

Methods

  • __init__ (data=None, num_topics=100, eta=0.01, iter_infer=50, lda_model=None)

  • static_online (wordids, wordcts)

    First does an E step on the mini-batch given in wordids and wordcts, then uses the result of that E step to update the topics in M step.

    Parameters:

    • wordids: A list whose each element is an array (terms), corresponding to a document. Each element of the array is index of a unique term, which appears in the document, in the vocabulary.
    • wordcts: A list whose each element is an array (frequency), corresponding to a document. Each element of the array says how many time the corresponding term in wordids appears in the document.

    Return: tuple (time of E-step, time of M-step, theta): time the E and M steps have taken and the list of topic mixtures of all documents in the mini-batch.

  • e_step (wordids, wordcts)

    Does e step

    Note that, FW can provides sparse solution (theta:topic mixture) when doing inference for each documents. It means that the theta have few non-zero elements whose indexes are stored in list of lists ‘index’.

    Return: tuple (theta, index): topic mixtures and their nonzero elements’ indexes of all documents in the mini-batch.

  • m_step (wordids, wordcts, theta, index)

    Does M-step

  • learn_model (save_model_every=0, compute_sparsity_every=0, save_statistic=False, save_top_words_every=0, num_top_words=10, model_folder=None, save_topic_proportions=None)

    This used for learning model and to save model, statistics of model.

    Parameters:

    • save_model_every: int, default: 0. If it is set to 2, it means at iterators: 0, 2, 4, 6, …, model will is save into a file. If setting default, model won’t be saved.
    • compute_sparsity_every: int, default: 0. Compute sparsity and store in attribute statistics. The word “every” here means as same as save_model_every
    • save_statistic: boolean, default: False. Saving statistics or not. The statistics here is the time of E-step, time of M-step, sparsity of document in corpus
    • save_top_words_every: int, default: 0. Used for saving top words of topics (highest probability). Number words displayed is num_top_words parameter.
    • num_top_words: int, default: 20. By default, the number of words displayed is 10.
    • model_folder: string, default: None. The place which model file, statistics file are saved.
    • save_topic_proportions: string, default: None. This used to save topic proportions \(\theta\) of each document in training corpus. The value of it is path of file .h5

    Return: the learned model (object of class LdaModel)

  • infer_new_docs (new_corpus)

    This used to do inference for new documents. new_corpus is object Corpus. This method return topic proportions \(\theta\) for each document in new corpus

Example

from tmlib.lda import StreamingFW
from tmlib.datasets import DataSet

# data preparation
data = DataSet(data_path='data/ap_train_raw.txt', batch_size=100, passes=5, shuffle_every=2)
# learning and save the model, statistics in folder 'models-streaming-fw'
streaming_fw = StreamingFW(data=data, num_topics=20)
model = streaming_fw.learn_model(save_model_every=1, compute_sparsity_every=1, save_statistic=True, save_top_words_every=1, num_top_words=10, model_folder='models-streaming-fw')


# inference for new documents
vocab_file = data.vocab_file
# create object ``Corpus`` to store new documents
new_corpus = data.load_new_documents('data/ap_infer_raw.txt', vocab_file=vocab_file)
theta = streaming_fw.infer_new_docs(new_corpus)
[1](1, 2) Khoat Than, Tu Bao Ho, “Inference in topic models: sparsity and trade-off”. [Online]. Available: https://arxiv.org/abs/1512.03300

[2] K. L. Clarkson, “Coresets, sparse greedy approximation, and the frank-wolfe algorithm,” ACM Trans. Algorithms, vol. 6, pp. 63:1–63:30, 2010. [Online]. Available: http://doi.acm.org/10.1145/1824777.1824783